
Clustering from Constraint Graphs

Ari Freund∗ Dan Pelleg∗ Yossi Richter∗

Abstract

In constrained clustering it is common to model the pairwise

constraints as edges on the graph of observations. Using

results from graph theory, we analyze such constraint graphs

in two contexts, both of immediate value to practitioners.

First, we explore the issue of constraint noise under several

intuitive noise models. We apply results from random

graph theory, which facilitate the analysis of finite-sized

graphs and realistic data partitions and noise levels, to

obtain a quantification of the effect noisy edges may have

on any constrained clustering algorithm under a set of

commonly-used assumptions. We also demonstrate the

dangers in the common practice of connected-component

constraint set augmentation, when used in the presence

of noise. Second, we describe two practical randomized

algorithms that estimate the number of induced clusters

using only a small number of constraints. We conclude with

an experimental evaluation that shows the effect of noise

on common UCI data sets, as well as some aspects of the

behavior of our algorithms.

1 Introduction

For a long time, clustering was associated solely with
unsupervised learning. The absence of supervision (in
the form of explicit class labels for data instances) meant
wider applicability of clustering algorithms. But it also
made for a weakness, because it was impossible to offset
the clustering algorithm’s internal bias and direct it
towards a particular type of solution. Recently, the
discipline of constrained clustering has emerged as a
way to provide this kind of direction without requiring
explicit labeling of data points.

In constrained clustering the general form of the
clustering problem is augmented with a set of con-
straints that the clustering algorithm should consider.
The most popular form of constraints are instance-level
constraints, in particular, must-link (ML) constraints
to indicate that a pair of input points need to be in
the same output cluster, and cannot-link (CL) con-
straints to indicate the opposite. This is the formu-
lation of greatest interest, and the only one we explore
in this paper. Recall that traditional clustering criteria
keep intra-cluster distances (in some unspecified metric

∗IBM Haifa Research Lab, Haifa, Israel

and space) low and inter-cluster distances high. A con-
strained clustering algorithm optimizes its original dis-
tance criteria, as well as its conformance to the added
constraints.1

Linkage constraints of the above form have been
thoroughly investigated and shown to improve results in
different application areas such as GPS lane finding [1],
video and image indexing [2, 3], robot navigation [4],
image segmentation [5] and text categorization [6, 7].
They are considered to increase cluster purity, decrease
convergence time, and reduce error [8].

Constraints can be acquired either directly from hu-
man feedback [6], or inherently from the data collection
process using explicit domain knowledge. For example,
spatial or temporal proximity of data points may be en-
coded as a constraint [1, 2]. Another popular approach,
often used for evaluation purposes, is to draw random
pairs out of a labeled test set, and generate ML or CL
constraints, according to the ground truth. Common to
all previous work is the assumption that the constraints
are consistent with some (unknown) ground truth, and
contain no errors.

In contrast, this paper explores the issue of con-
straint noise. We take the approach, originated in this
context by Davidson and Ravi [4], of treating the con-
straints as edges on a graph with the data points as
nodes. We define intuitive noise models that may in-
sert noise in a practical constraint acquisition scenario,
and translate their effect to the generated graph. We
then employ results from random graph theory to an-
alytically investigate the effect of noise on finite-sized
data sets and realistic data partitions and noise levels.
We derive a quantification of the effect noisy edges may
have on any constrained clustering algorithm, under a
set of commonly-used assumptions. We also provide an
experimental evaluation that shows the effect of such
noise in some common UCI data sets. In particular we
show that sampling an essentially linear (in the number
of data points) number of edges leads to a completely
useless set of constraints in common situations.

A second contribution of this paper is two fast ran-
domized algorithms to estimate the number of classes
from the graph’s edges. This scenario was first laid out

1Hard and soft variants both exist.



in [9], who observed that even finding the connected
components induced by the ML edges is impractical for
large data sets. Our algorithms use a very small number
of edge samplings and are very efficient. They can also
be made noise resistant with a little extra effort.

Paper organization. In Section 2 we define and
theoretically analyze three realistic noise models. In
Section 3 we present our two algorithms for estimating
the number of clusters from constraints. In Section 4
we show experimental results. In Section 5 we provide
concluding remarks.

2 Models of noise

In this section we define three models of noisy data, in
each case analyzing the impact of noise on the quality
of clustering. We view noised clustering as a two-
step process. First, some noise is introduced, which
distorts the ground truth constraint graph (changing
node labels and/or inverting edge types). Then the
clustering algorithm takes over, but is only permitted
to observe this distorted ground truth rather than the
actual ground truth. This two-step conceptualization
allows us to decouple the effect of noise from the inner
workings of the clustering algorithm—the effects we
discuss are derived directly from the expected properties
of the noised graph, and so are independent of the
particular algorithm used. For example, the impact of
noise might be a connected ML graph. Recall that a
commonly used heuristic is to add the transitive closure
of the ML constraints. That is, if the input includes the
constraints ML(a, b) and ML(b, c), then the transitive
constraint ML(a, c) is added in pre-processing. If the
noised ML graph is connected, the transitive closure
is a clique, which renders all ML constraints equally
useless, and the clustering algorithm falls back into the
realm of unconstrained clustering. It may still produce
good results, depending on the particulars of the data
and its own implicit bias, but they will not be due to
the ML constraints.

In the sequel we denote by n the number of data
points which form the nodes of the constraint graph,
and by k the number of classes, or clusters. Each edge
is classified as either ML or CL. Our main focus will
be the ML graph, i.e., the subgraph containing only the
ML edges. This graph (in its undistorted form) consists
simply of k cliques. We denote the error probability
(reflecting the noise) by ε, and assume that ε is small
(in particular, ε < 1/2).

2.1 Noisy edges The noisy edges model is that
every edge, independently, inverts its type (from ML
to CL or vice versa) with probability ε. The clustering
algorithm then reads edge types directly (rather than

inferring them from the node classes). In the real-world
parallel of this error model constraints are generated
from human feedback, as in [6]. The human operator
may err, reporting an ML or a CL edge where the
inverse is required. It turns out that the impact of even
small noise levels is quite dramatic. We quantify this as
follows.

1. If ε = Ω(ln n/n) then with very high probability
the distorted ML graph is connected.

2. If ε = Ω(ln k/k) and the algorithm samples Ω(n)
edges, then, assuming the clusters are equal sized,2

the ML constraints arising from the sampled edges
are sufficient (with high probability) to connect all
clusters.

3. If ε = Θ(ln k/k) and the algorithm samples
Ω(kn ln n) edges, then, assuming the clusters are
equal sized, the ML constraints induce (with high
probability) a connected graph.

We remark that although one may question the im-
mediate applicability of the above negative theoretical
results in the real world, the empirical results observed
in our experiments (see Section 4) establish their prac-
tical implications.

The wisdom emanating from these results is that
this is a case where less is truly more. Unless the
edge-class identification can be done very accurately,
it is advisable to sample only a small number of edges.
An excess of sampled edges is very likely to impair the
clustering rather than assist it.

2.1.1 A word on random graphs To prove our
theoretical results we appeal to the theory of random
graphs, which we now introduce briefly. A random graph
is simply a graph formed as a product of some stochastic
process. The systematic study of random graphs orig-
inated in a series of papers by Erdős and Rényi start-
ing in the late 1950s, and rapidly bloomed into a full
fledged subfield of Combinatorics. (Two good references
are the books by Bollobás [10] and Janson,  Luczak,
and Ruciński [11].) A significant part of the theory
is devoted to the study of the manner in which graph
properties (such as connectedness, chromatic number,
etc.) evolve as the stochastic process progresses. For
this to be meaningful, it is necessary to examine spe-
cific stochastic processes, and, indeed, several such pro-
cesses have been studied extensively. One such process,
which is of interest to us here, is the G(n, p) process: it
is parametrized by n and p, and is defined as follows.

2The equal sized requirement is soft. The effect lessens as the
size disparity grows. The same is true for Item 3.



First, n nodes are created. Then, for every unordered
pair of nodes, independently, an edge is created between
these two nodes with probability p. Another random
process we shall be using is the G(n, m) process. Here a
uniformly distributed set of m edges is formed between
the n nodes. While the two processes may seem equiva-
lent, they differ in the resultant edge distribution. (For
example, in G(n, p) edges are independent whereas in
G(n, m) they are not.)

The two main results that concern us are:

In G(n, p), if p = Ω( ln n
n ), then the resultant

graph is almost surely connected.

In G(n, m), if m = Ω(n ln n), then the resul-
tant graph is almost surely connected.

By almost surely we mean that asymptotically as n →
∞, the probability of the event approaches 1. Although
a lower bound on the probability of connectedness as a
function of n and the constant implied in the Ω notation
can be extracted from the proof of the above results, it
is not very informative from a practical point of view.
Suffice it to say that convergence to 1 is very rapid and
the probability is very high even for moderate values
of n and a small constant in the Ω term. Numerical
estimates can be easily obtained by experimentation.
(For example, in an experiment involving the G(n, p)
process with n = 1000 and p = 0.01, 99 out of 100
random graphs were connected. In a second experiment
using p = 0.02 all 100 graphs were connected.)

2.1.2 The effect on the ground truth ML graph

Theorem 2.1. If ε = Ω(ln n/n) then with very high
probability the distorted ML graph is connected.

Proof. Consider the ground truth undergoing noisy-
edge distortion. For every pair of nodes (indepen-
dently), if they are connected by an ML edge, they
will remain connected by such an edge with probabil-
ity 1− ε > ε (we are assuming ε is small, certainly less
than 1/2). If they are connected by a CL edge, this edge
will turn into an ML edge with probability ε. Thus, re-
ferring to the observable must-link graph, we see that it
is actually a random graph created by a G(n, p) process
(with p = ε), and it is therefore connected with high
probability.3

The import of this is quite clear: for even moderate
n and fairly small ε the ML graph seen by the clustering

3Strictly speaking, the process is not quite G(n, p) because
some of the pairs—the ones connected by ML edges in the
actual ground truth—have probability greater than ε of becoming
connected by an ML edge. But this can only hasten the onset of
connectedness.

algorithm is connected with very high probability. Note
that this is true regardless of structure of the undis-
torted ML graph. (The exact probability of becoming
connected will obviously depend on the original must-
link structure, but in all cases it will be very close to 1.)
Thus the ML graph almost surely conveys no useful in-
formation.

2.1.3 The effect on cluster separation Although,
as we have just seen, the full ML graph is useless, a
clustering algorithm can still arguably make use of it,
since such an algorithm will typically sample only a
relatively small number of edges, and most of these
edges will be reported correctly, so the algorithm will
not discover that the graph is connected. It is therefore
necessary for us to delve deeper in order to understand
the actual impact of errors.

We analyze the case where the clusters are equal-
sized and the sampling process is repeated uniformly
distributed i.i.d. node-pair sampling. (In other words,
sampling m edges means repeating m times indepen-
dently: select a random, uniformly distributed, node-
pair.) Let us define the observed graph as the subgraph
of the constraint graph in which only the edges sam-
pled by the algorithm and reported as ML are retained,
and let us also define the observed cluster graph as the
graph obtained from the observed graph by shrinking
each true cluster (i.e., the nodes belonging to the same
cluster in the undistorted ground truth) to a single node
and placing an edge between two nodes if the observed
graph contains an edge connecting any two nodes in the
corresponding clusters.

Theorem 2.2. If ε = Ω(ln k/k) and the algorithm sam-
ples Ω(n) edges, then with high probability the observed
cluster graph is connected.

Proof. Let us view the random process which constructs
the graph as a two-step process in which the noise is
added last. Specifically, start by constructing an ob-
served cluster graph from the actual ground truth with-
out applying any noise. Call this graph the potential
graph. Then apply noise to the ground truth, and ob-
tain the true observed cluster graph from the potential
graph as follows. For every edge (u, v) in the poten-
tial graph, retain this edge if and only if, among the
edges connecting the clusters corresponding to u and v,
at least one of the edges sampled in the first step has
become an ML edge due to the noise. Note that (given
a particular outcome of the first step) the probability of
an edge surviving through the second step is at least ε,
and that these events (i.e., survival of edges) are inde-
pendent.

Now consider a particular pair of nodes (u, v) in



the potential graph. There are
(

n
k

)2
edges running

between the two corresponding clusters in the ground
truth ML graph. Suppose the clustering algorithm
samples Ω(n) edges—for simplicity and concreteness
let us assume exactly n edges. The probability that
a particular sampling step will pick an edge in this
group is roughly (using the approximation

(

n
2

)

≈ n2/2)
(n/k)2

n2/2 = 2
k2 . Thus the probability that (u, v) will not

appear as an edge in the potential graph is at most
(roughly) (1−2/k2)n ≈ e−2n/k2

. Using the union bound
we get that the probability that the potential graph

is not fully connected is at most k2

2 e−2n/k2

, which is
negligible for reasonable values of n and k. (E.g., for
n = 500 and k = 10 it evaluates to 0.0023.) Thus the
potential graph is fully connected with high probability.

Given that the potential graph is indeed fully con-
nected, the second step, in which noise is applied, can
be viewed as a G(n, p) process on the k nodes of the
potential graph with p = ε. Thus for error probability
ε = Ω( ln k

k ) the observed cluster graph will be connected
with high probability. Asymptotically, then, for large
k and significantly larger n (n � k2), even minuscule
error probabilities almost guarantee that the observed
cluster graph will be connected.

The edges of the observed cluster graph represent
the inability of the algorithm to distinguish between
different clusters. Assuming the clustering algorithm
is fairly good at identifying the intra-cluster relations
(based on metric distances, etc.), the added ML con-
straints force it to fuse clusters that should actually re-
main distinct. The worst case scenario, in this sense,
is when the observed cluster graph is connected, imply-
ing a single cluster. If, on the other hand, the algo-
rithm fails to identify the intra-cluster relations accu-
rately, then the situation is arguably even worse: not
only are clusters being spuriously split up, but bits of
distinct clusters are being glued together. In either case,
the constraints are actually worse than useless. This is
because too many are being used.

2.1.4 The effect on the connectedness of the
observed ML graph Our final result examines the
situation when the number of sampled edges is increased
from Ω(n) to Ω(kn ln n) (and the clusters are equal
sized). We show that the observed graph becomes
connected with high probability.

Theorem 2.3. If ε = Θ(ln k/k) and the algorithm
samples Ω(kn ln n) edges, then with high probability the
observed graph is connected (for sufficiently large n and
k, and n� k2).

Proof. To ease the exposition we break the proof into

five steps. We denote by l the number of edges sampled
by the clustering algorithm, and by r the number of
edges within a cluster in the ground truth. Since the
clusters are equal sized, we have r =

(

n/k
2

)

≈ n2/(2k2).
We also approximate the total number of edges by
(

n
2

)

≈ n2/2. The next four lemmas refer to the subgraph
of the ground truth induced by an arbitrary cluster.
Following these lemmas, we wrap everything up in a
final proof of the theorem.

Lemma 2.1. The probability that more than half of the
edges in the subgraph vanish from the distorted ML
graph is negligibly small compared with 1/k.

Proof. The probability that a particular set of r/2 edges
vanish is εr/2. There are

(

r
r/2

)

≤
(

r·e
r/2 )r/2 = (2e)r/2 such

sets, so applying the union bound we can bound the
probability that at least r/2 edges vanish by (2e)r/2εr/2,
which is negligibly small since ε = Θ(ln k/k) and we are
assuming large k.

Lemma 2.2. Given that the set of surviving edges in
the subgraph contains at least r/2 edges, the probability
that the sampling process hits this set less than lr/(2n2)
times is negligibly small compared with 1/k.

Proof. The probability of a single sampling step hitting
the set of surviving edges is at least (r/2)/(n2/2) =
r/n2. Denoting by X the number of hits, we therefore
have E[X ] ≥ lr/n2. Thus Pr

(

X < lr/(2n2)
)

≤ Pr(X <
1
2E[X ]). Since the sampling steps are independent, we
can apply Chernoff’s bound Pr(X < (1 − δ)E[X ]) <

e−
1

2
E[X]δ2

with δ = 1/2 to obtain Pr(X < lr/(2n2)) <

e−lr/(8n2). Plugging in l = Ω(nk ln n) and r ≈ n2/(2k2),
together with k2 � n gives the desired result.

Lemma 2.3. Given that the set of surviving edges in
the subgraph contains at least r/2 edges and that the
sampling process hits this set at least lr/(2n2) times, the
probability that it hits less than lr/(6n2) distinct edges
in this set is negligibly small compared with 1/k.

Proof. Let t ≥ r/2 be the number of surviving edges,
and let us focus on the first lr/(2n2) hits. Consider
a particular surviving edge. Since the hits are inde-
pendent and uniformly distributed, the probability that
the edge is hit in a single sampling step (among the first
lr/(2n2) hits) is 1/t, and therefore the probability that
it is hit more than three times is less than

∑lr/(2n2)
i=4

(

lr/(2n2)
i

)

t−i

≤
∑lr/(2n2)

i=4

(

lr
2n2t

)i

≤
∑lr/(2n2)

i=4 (l/n2)i

< 2(l/n2)4,



where the last inequality follows from l� n2. Thus
the probability that at least one of the edges is hit
more than three times is (by the union bound) less than
2r(l/n2)4, which is negligibly small since l = O(kn ln n)
and r ≈ n2/(2k2) and we are assuming large k and n,
and k2 � n. If there are at least lr/(2n2) hits, and no
edge is hit more than three times, the number of distinct
edges hit must be at least lr/(6n2).

Lemma 2.4. Given that at least lr/(6n2) distinct edges
have been sampled and identified correctly as ML edges,
the probability that the corresponding cluster is not
connected in the observed ML graph is negligibly small
compared with 1/k.

Proof. The set of sampled edges (within the subgraph)
is uniformly distributed (since the sampling proce-
dures favors no particular set of edges). Therefore
the subgraph of the observed ML graph correspond-
ing to the cluster is the product of a G(n, m) process
on the n/k nodes of the cluster, with m ≥ lr/(6n2) =

Ω(n2/(2k2)·kn ln n
6n2 ) = Ω(n

k ln n) = Ω(n
k ln n

k ). Thus it is
almost surely connected.

Proof. [Proof of Theorem 2.3] We have already seen
that Ω(ln k/k) edges are sufficient for the observed
cluster graph to be connected. It thus suffices to show
that when Ω(kn ln n) edges are sampled, each of the
clusters becomes connected (with high probability) in
the observed ML graph (since the combination of these
two events implies that the entire observed ML graph
is connected). The probability that a given cluster
is not connected is bounded by the sum of the four
negligibly small probabilities explored in the previous
four lemmas. Since each of this probabilities is negligible
relative to 1/k, applying the union bound on the k
clusters gives the desired result.

2.2 Noisy nodes In the noisy nodes model the errors
occur as follows. For each node, independently, the
node is assigned a new class (say, chosen uniformly
from the set of all classes excluding the node’s original
class) with probability ε, and is left undisturbed with
probability 1− ε. The motivation for this error model is
a scenario where there is some inherent error in the low-
level observation process causing instances to be mis-
identified. We assume that constraints are generated
in pre-processing, after observing the instances, and
are therefore consistent with the observed labels. This
kind of constraint generation is standard practice in
experimentation with UCI data.

The noisy nodes model is quite robust in the sense
that the effect of noise is simply to distort the ground
truth by changing the class of a small number of nodes.

The impact this may have on a clustering algorithm
will depend on the interplay between the actual ground
truth and the algorithm in question. A good clustering
algorithm can be expected to suffer only slightly from
this distortion.

2.3 Inconsistent noisy nodes The inconsistent
noisy nodes model is something of a hybrid between
noisy nodes and noisy edges. Specifically, for each pair
of nodes (independently), the pair is examined, and de-
pending on whether both are seen to belong to the same
class, the edge between them is classified as ML or CL.
When a node is examined, the class returned is cor-
rect with probability 1 − ε and incorrect with proba-
bility ε. In the latter case the class returned is uni-
formly distributed in the set of all classes excluding the
node’s true class. The key difference between this model
and the plain noisy nodes model is that the outcome of
a given node examination is independent of any other
node examinations, including examinations of the same
node, i.e., the same node may report different classes
when queried multiple times. The motivation for this
error model comes from an observation system that si-
multaneously generates the instances and the associated
constraints. It does so automatically from background
knowledge such as spatial or temporal proximity. This
is the model used in [1], but we assume a fully-automatic
mode where errors are introduced (e.g., in marking of
the lane shifts, or in the identity of the vehicle).

True to its hybrid nature, the behavior of this
model is somewhere between that of noisy nodes and
noisy edges. To see this, observe that a CL edge is
misclassified with probability ε2/(k − 1) (both nodes
report identical incorrect classes). An ML edge is
misclassified with probability 2ε(1−ε)+ε2(1−1/(k−1))
(either exactly one node reports an incorrect class, or
both nodes report distinct incorrect classes). In effect,
we get the noisy edges model, but with a smaller error
probability for the CL edges and a nearly doubled error
probability for the ML edges. The remainder of the
analysis is similar to the analysis of the noisy edges
model, with suitably modified error parameters.

3 Computing the number of clusters

One of the obstacles to accurate clustering is often the
lack of knowledge of the “true” number of clusters.
Indeed, many clustering algorithms require this number
to be fixed apriori as part of the input. While there
does not always exist a “correct” answer, the underlying
assumption in constrained clustering is that the ground
truth does indeed partition the data points into a well
defined set of clusters, which can be easily identified by
examining all of the graph edges. However, as pointed



out by Davidson and Ravi [9], this may be impractical
when the size of the input is large.

In this section we propose two fast randomized
algorithms to compute the number of clusters with high
probability by sampling a small number of edges. The
first algorithm, named NumClustersThresh, makes
the natural assumption that we are mainly interested
in sufficiently large clusters, namely, clusters of size at
least some fraction p of the overall graph size. With
probability at least 1−p the algorithm returns a number
between the number of such clusters and the number
of all clusters, requiring O(( 1

p ln 1
p )2) edge samplings,

which is quite attractive for values of p arising in
practice (e.g., p = 0.05). The error probability can be
decreased exponentially by re-running several times and
taking the maximum result.

Algorithm NumClustersThresh(G, p)

Input: Constraint graph G on n nodes; fraction p.
Output: Number of big clusters, i.e., clusters of

size at least pn.

1. Choose independently and uniformly r = 2
p ln 1

p

nodes U = {u1, . . . , ur}.
2. For each index pair 1 ≤ i < j ≤ r do:
3. If (ui, uj) is an ML edge,
4. U ← U \ {ui}.
5. Return |U |.

Theorem 3.1. The number returned by Algorithm
NumClustersThresh does not exceed the number of
clusters in G, and is at least the number of big clusters
with probability at least 1− p.

Proof. We say that a cluster is represented in U if U
contains a node from that cluster. Let C denote the set
of clusters initially represented in U . Since every two
nodes coming from the same cluster are connected by
an ML edge, and every two nodes coming from different
clusters are not connected by an ML edge, the For each
loop leaves in U exactly one node from each cluster in C.
Thus the number returned by the algorithm is precisely
|C|, which is at most the number of clusters in G. To
complete the proof we need only show that C contains
all of the big clusters with probability at least 1−p. Let
C be a big cluster. The probability of not sampling a
node from C in a single sampling step is at most 1− p.
Therefore, the probability that C is not represented in
U is bounded by (1− p)r = (1− p)2/p ln 1/p < p2. Since
the number of big clusters is at most 1/p, applying the
union bound gives the desired result.

Observation 3.1. The number of edge samplings per-
formed by Algorithm NumClustersThresh, and its
running time, are O(( 1

p ln 1
p )2).

The drawback of NumClustersThresh is that
the number of edge samplings it requires depends on
the potential maximum number of clusters of interest
(i.e., 1/p), which may be substantially greater than the
actual number of such clusters. Our second algorithm,
named NumClusteresBalanced, partially redresses
this deficiency by replacing the “absolute” threshold
p with a relative one. Specifically, it assumes that
we are mainly interested in clusters of size at least
some fraction α of the size of the largest cluster.
The algorithm outputs a number which is between the
number of such clusters and the number of all clusters
with probability at least 3/4. The number of edge
samplings is O((l/α)2 ln2(l/α)) where l is the number
of clusters detected by the algorithm. Once again, the
error probability can be decreased exponentially by re-
running the algorithm.

Algorithm NumberClustersBalanced(G, α)

Input: Constraint graph G on n nodes; fraction α.
Output: Number of clusters in G.

1. Initialize: c← 4; t← 4; α← min{α, 1/2}.
2. While c ≥ t do:
3. t← max{2t, c}.
4. c← NumClustersThresh(G, α

t ).
5. Return c.

Theorem 3.2.

1. The number returned by Algorithm NumClusters-

Balanced is computed by Algorithm NumClus-

tersThresh, so it cannot exceed the number of
clusters in G (by Theorem 3.1).

2. If the size ratio between the smallest and largest
clusters is at least α, the algorithm returns the
number of clusters with probability at least 3/4.

3. The number of edge samplings performed by
the algorithm, and its running time, are
O((l/α)2 ln2(l/α)), where l is the number of
clusters detected by the algorithm.

Proof. Let k be the number of clusters in the graph.
In each iteration the algorithm tests whether the graph
contains at least t clusters by calling Algorithm Num-
ClustersThresh. Assuming that the size threshold α/t
is sufficiently low for Algorithm NumClustersThresh
to return a number that is at least t as long as t ≤ k,
the loop will continue until t surpasses k. Once t sur-
passes k, the algorithm will halt since the number re-
turned by Algorithm NumClustersThresh is at most
k (the true number of clusters), which is less than t.
This will occur after (at most) a logarithmic number of



iterations, since t (at least) doubles each iteration. The
graph contains k clusters, so the size of the largest is
at least n/k, and therefore the size of the smallest is at
least αn/k. In the last iteration t > k, so the threshold
α/t is sufficiently small for Algorithm NumCluster-
sThresh to succeed (i.e., return k) with probability at
least 1 − α/t (by Theorem 3.1). To bound the over-
all failure probability of Algorithm NumClustersBal-
anced, let us consider the failure probability at the ith
iteration, conditioned on the event that the iteration oc-
curs. We denote by ti the value of t used in the call to
Algorithm NumClustersThresh in the ith iteration.
In the iteration in which ti > k we have already seen
that the failure probability is at most α/ti, and this it-
eration is last. In the preceding iterations ti ≤ k, and
the failure probability is the probability that Algorithm
NumClustersThresh will nonetheless return a num-
ber smaller than ti. The threshold used is α/ti, which
is sufficient for Algorithm NumClustersThresh to de-
tect at least ti clusters4 with error probability at most
α/ti. By the union bound, the overall failure probability
of Algorithm NumClustersBalanced is bounded by
the sum of the above conditional probabilities: α

∑

i
1
ti

.
Since t1 = 8 and ti+1 ≥ 2ti, we can bound the above
sum by 1

8α
∑

∞

i=0 2−i < 1
4 .

It remains to bound the number of edge samplings.
Summing over all iterations, the total number of edge
samplings is O(

∑

i(ti/α)2 ln2(ti/α)). Since t ranges
from 8 to at most 2l, where l is the number of clus-
ters detected by the algorithm, we get a bound of
O((l/α)2 ln2(l/α)).

Theorem 3.2 tells us that if the imbalance parameter
α is set correctly, Algorithm NumClustersBalanced
will find the correct answer using a number of edge
samplings that is (roughly) quadratic in k/α. If,
however, α is chosen larger than the actual smallest
to largest cluster size ratio, the performance of the
algorithm may vary between two extremes. The good
case is when most of the nodes are contained in clusters
whose sizes are within α of the largest. In this case the
algorithm will tend to count only these large clusters,
but will return a higher number (and run longer) with
some relatively small probability. The bad case is when
the majority of nodes are contained in very many, very
small clusters (at the extreme, single node clusters).
Essentially, the data is unclustered. In this case the

4Actually, it is sufficient to detect ti clusters assuming the
graph contains exactly ti clusters. Intuitively, it seems obvious
that if, as is our case, the graph contains more that ti clusters (all
obeying the α parameter), its probability of detecting at least ti

clusters can only be greater. There is a straightforward proof of
this for the case α ≤ 1/2. This is the reason for the initialization
line: α← min{α, 1/2}.

algorithm will tend to detect many of the small clusters
and perform many edge samplings. (Note, however,
that the algorithm never overestimates the true number
of clusters.) In Section 4 we provide some experimental
results concerning these effects.

3.1 Dealing with noisy data Turning to the case
of noisy data (either noisy edges or inconsistent noisy
nodes), there are two problems. The first is that ML
edges may be reported as CL, leading Algorithm Num-
ClustersThresh to retain more than one node per clus-
ter. We can overcome this difficulty easily by count-
ing the connected components induced by the edges be-
tween all sampled node pairs. Assuming each cluster
is represented by several sampled nodes (which may
require a moderate increase in the number of nodes
to sample), the probability that the clique induced by
these nodes will become disconnected due to noise is
very small, so we can simply count connected compo-
nents. The second problem is CL edges reported as
ML, causing distinct connected components to fuse. We
can overcome this by cutting up connected components
based on minimum cuts. Because the noise probabil-
ity is small (and again assuming clusters are reasonably
represented in U), the number of edges in the cut sep-
arating two clusters will be much smaller than in cuts
within the cluster. We can therefore look for the min-
imum cut inside each connected component, and if it
is below a reasonable threshold (defined relative to the
number of nodes in the component) we discard these
edges and repeat.

There is a contrast between these techniques and
Section 2. On the one hand, identifying the classes
correctly from constraints in the presence of even minor
noise is impractical. On the other hand, getting their
number right can be done very efficiently. In addition
to this shift of focus, Section 2 deals with the case
of unstructured, randomly chosen edges, whereas here
we actively sample edges that (noise notwithstanding)
induce separate cliques.

4 Experiments

In this section we make the theoretical discussion of
Section 2 more concrete by providing simulation results
of different noise scenarios on commonly-used data sets.
We also present experimental results concerning the
behavior of Algorithm NumClustersBalanced from
Section 3.

4.1 Effect of Noise on Clustering. We experi-
mented with several UCI data sets (see Figure 1). The
experimental setup was as follows. The UCI data was
stripped of all metric information, leaving just the iden-



tity of the points and their labels. A random pair was
drawn from this data, noised according to the particu-
lar noise model, and output as a constraint. This step
was repeated as necessary. Note that the number of
edges of a particular type (ML or CL) is only known
in expectation. For example, on a balanced two-class
set, we expect half the generated edges to be ML, as
compared to a quarter in a four-class balanced set. In
the graphs below, the X axis shows the total number of
edges drawn, as a fraction of n (the number of nodes).
Note that n may vary from one dataset to another. The
noise rate ε was set to 1%, and experiments were re-
peated at least 100 times. Error bars are shown, but
are generally too small to be seen clearly.

We first explored the effect of noisy ML edges after
applying transitive-closure processing. For each set of
noised ML edges drawn as above we computed the
number of connected components in the resulting graph.
Figure 2(a) shows the probability that there is just
one connected component. We see that it is close to
0 as long as the number of edges is up to 5n. The
transition to connectedness happens fast, as expected,
and is generally complete at 10n. The exceptions are
the datasets with more than 3 classes, namely glass and
e-coli. Since for most algorithms and usage scenarios the
number of constraints is very small, they are generally
on the safe side under this metric.

However, the experiment above is unrealistic in at
least two respects. First, it does not deal with the case
where some components join, forming spurious links,
but not enough to connect the whole graph. Second,
the metric data in the input is often used to cluster the
data points together, whereas the experiment ignores
this. The second experiment addresses this second point
(discussed theoretically in Theorem 2.2). The edges
were drawn as before, but prior to transitive closure
augmentation, intra-class edges were added (so that
each input class was guaranteed to form a clique). The
results are shown in Figure 2(b). Here, the collapse
of the constraint graph occurs much earlier. For two-
class inputs, which are common, as few as 0.2n edges
(ML and CL combined) are enough to trigger it with
probability greater than 1/2. Other inputs seem to
be on safer ground, but they too are affected by
spurious links, as shown in Figures 3–5. Figure 3 shows
the number of connected components as a function
of the number of edges sampled in the noisy edges
model; Figure 4 shows the probability that the graph
is not connected as a function of the number of edges
sampled in the inconsistent noisy nodes model; and
Figure 5 shows the number of connected components
as a function of the number of edges sampled in the
inconsistent noisy nodes model.

4.2 Behavior of Algorithm NumClustersBal-
anced. Initially, we ran Algorithm NumClustersBal-
anced on the same UCI data sets, but because these
data sets are small, the algorithm did not exhibit any
interesting behavior. In all cases it identified the true
number of clusters in up to 3 iterations, even when using
relatively large values of α.

In order to gain some insight into the algorithm’s
behavior on larger data sets, especially ones with differ-
ent mixes of cluster sizes, we ran it on three synthetically
generated data sets, each consisting of approximately
1000 nodes and 15–20 clusters. The first data set, la-
beled A1, consisted of 19 clusters whose sizes formed an
arithmetical progression: 5, 10, 15, . . . , 95. The second
data set, labeled A2, consisted of 10 clusters of size 100
and 5 clusters of size 5. The last data set, A3, consisted
of one cluster of size 500 and 20 clusters of size 25. For
each data set, the algorithm was run 100 times. No
noise was introduced in these experiments.

Figure 6(a) shows the average fraction of edges
that were sampled by the algorithm as a function of α,
and Figure 6(b) shows the average number of clusters
detected by the algorithm as a function of α. In both
graphs α is given as a percentage. (The graphs end
at α = 50% because the algorithm resets α > 1/2 to
α = 1/2.) We see that in all cases the number of
edges sampled is exceedingly small (and negligibly small
relative to our theoretically derived bound). We also see
that on A1 and A3, the algorithm successfully identified
the correct number of clusters and was completely
insensitive to α. On A2 it performed very well even
for α as large as 1/5 (the correct value for all inputs is
α = 1/20), after which its performance declined roughly
linearly. These results indicate that our algorithm is
fast, accurate, and robust.

5 Conclusion

Although theoretically flavored, this is also a practical
paper in the sense that practitioners can directly apply
lessons learned from it. We ground our results in
theory, but try to frame them in a realistic setting
with finite quantities. We give an analysis of the
onset of connectedness in the presence of constraint
noise, and suggest randomized algorithms for estimating
the number of clusters. We also provide experimental
results demonstrating the actual phenomena.

There is probably much more that can be said
on the topic. We stop short of listing techniques of
dealing with noise. These can be in the form of general
guidelines (other than advising against the transitive
closure), or algorithm-specific improvements as in [12].
This is an obvious area of future work. Our vision is
that as pairwise constraints gain popularity, they will



0 50 100 150 200 250

iris

wine

glass

0 200 400 600 800

ecoli

ionosphere

breast

pima

Figure 1: Sizes and class sizes of data sets used

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  1  2  3  4  5  6  7  8  9  10

Co
nn

ec
te

dn
es

s

Edges, relative

breast

iris

ecoli

wine

glass

pima

ionosphere

(a) Components defined only by edges.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1

Co
nn

ec
te

dn
es

s

Edges, relative

breast

iris

ecoli

wine

glass

pima

ionosphere

(b) Ground truth components “compressed” to a single
node.

Figure 2: Probability of connectedness vs. number of drawn edges (in the noisy edges model).

 0

 100

 200

 300

 400

 500

 600

 700

 800

 0  1  2  3  4  5  6  7  8  9  10

Co
m

po
ne

nt
s

Edges, relative

breast
iris

ecoli
wine

glass
pima

ionosphere

(a) Components defined only by edges.

 1

 2

 3

 4

 5

 6

 7

 8

 0  1  2  3  4  5  6  7  8  9  10

Co
m

po
ne

nt
s

Edges, relative

breast
iris

ecoli
wine

glass
pima

ionosphere

(b) Ground truth components “compressed” to a single
node.

Figure 3: Number of connected components vs. number of drawn edges, under the noisy edges model.



 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  0.5  1  1.5  2  2.5  3  3.5  4  4.5  5

Un
co

nn
ec

te
d

Edges, relative

breast

iris

ecoli

wine

glass

pima

ionosphere

(a) Components defined only by edges.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.5  1  1.5  2  2.5  3  3.5  4  4.5  5

Un
co

nn
ec

te
d

Edges, relative

(b) Ground truth components “compressed” to a single
node.

Figure 4: Probability of existence of more than one component vs. number of drawn edges, under the inconsistent
noisy nodes model.

 0

 100

 200

 300

 400

 500

 600

 700

 800

 0  1  2  3  4  5  6  7  8  9  10

Co
m

po
ne

nt
s

Edges, relative

breast
iris

ecoli
wine

glass
pima

ionosphere

(a) Components defined only by edges.

 1

 2

 3

 4

 5

 6

 7

 8

 0  1  2  3  4  5  6  7  8  9  10

nc
om

ps
_c

om
pr

es
s

nedges_rel

breast
iris

ecoli
wine

glass
pima

ionosphere

(b) Ground truth components “compressed” to a single
node.

Figure 5: Number of connected components vs. number of drawn edges, under inconsistent noisy nodes model.



 0.002

 0.004

 0.006

 0.008

 0.01

 0.012

 0.014

 0.016

 0.018

 0.02

 0  5  10  15  20  25  30  35  40  45  50

Ed
ge

s

alpha

A1

A2

A3

(a) Fraction of edges sampled.

 13

 14

 15

 16

 17

 18

 19

 20

 21

 22

 0  5  10  15  20  25  30  35  40  45  50

clu
st

er
s

alpha

A1
A2
A3

(b) Number of clusters detected.

Figure 6: Performance of NumClustersBalanced vs. α

be acquired from more diverse sources. The inevitable
outcome will be introduction of various forms of noise.
Surveying these, and producing matching analyses for
them, is another area of future work.

References

[1] Kiri Wagstaff, Claire Cardie, Seth Rogers, and Stefan
Schroedl. Constrained k-means clustering with back-
ground knowledge. In Carla Brodley and Andrea Dany-
luk, editors, Proceeding of the 17th International Con-
ference on Machine Learning, San Francisco, CA, 2001.
Morgan Kaufmann.

[2] Wei-Hao Lin and Alexander Hauptmann. Structuring
continuous video recordings of everyday life using time-
constrained clustering. In IS&T/SPIE Symposium on
Electronic Imaging, San Jose, CA, January 2006.

[3] T. Hertz, N. Shental, A. Bar-Hillel, and D. Weinshall.
Enhancing image and video retrieval: Learning via
equivalence constraints. In Proc. of IEEE Conference
on Computer Vision and Pattern Recognition, 2003.

[4] Ian Davidson and S. S. Ravi. Clustering with con-
straints: Feasibility issues and the k-means algorithm.
In 5th SIAM Data Mining Conference, 2005.

[5] Stella X. Yu and Jianbo Shi. Grouping with directed
relationships. Lecture Notes in Computer Science,
2134, 2001.

[6] David Cohn, Rich Caruana, and Andrew McCallum.
Semi-supervised clustering with user feedback. Techni-
cal report, Cornell University, 2003. TR2003-1892.

[7] Sugato Basu, Mikhail Bilenko, and Raymond J.
Mooney. A probabilistic framework for semi-supervised
clustering. In Won Kim, Ron Kohavi, Johannes
Gehrke, and William DuMouchel, editors, Proceedings

of the Tenth ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, pages 59–
68, Seattle, WA, August 2004. ACM.

[8] Sugato Basu and Ian Davidson. Clustering with con-
straints: Theory and practice. Online Proceedings of a
KDD tutorial, 2006. http://www.ai.sri.com/∼basu/

kdd-tutorial-2006/.
[9] Ian Davidson and S. S. Ravi. Intractability and

clustering with constraints. In Proc. of International
Conference on Machine Learning, 2007. To appear.

[10] Bélla Bollobás. Random Graphs (2nd ed.). Cambridge
University Press, 2001.

[11] Svante Janson, Tomasz  Luczak, and Andrzej Ruciński.
Random Graphs. John Wiley & Sons, 2000.

[12] Blaine Nelson and Ira Cohen. Revisiting probabilis-
tic models for clustering with pair-wise constraints. In
Proc. of International Conference on Machine Learn-
ing, 2007. To appear.

[13] Dan Pelleg and Dorit Baras. k-means with large and
noisy constraint sets. In ECML, 2007.


